BT1: Cho a+b>1. Chứng minh: a4+b4>=\(\dfrac{1}{8}\)
BT2: Cho a,b,c>0. Chứng minh rằng: \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}>=a+b+c\)
1. Cho 3 số a,b,c, thỏa mãn abc khác 1; a2/b+c + b2/a+c + c2/b+a = 0
Chứng minh rằng: a/b+c + b/a+c + c/a+b = 1
2. Rút gọn biểu thức A = (a4 - 5a2 + 4)/(a4 - a2 + 4a - 4)
3. Cho m,n thuộc Z. Chứng minh rằng: mn(m2 - n2) chia hết cho 6
4. Tìm giá trị nhỏ nhất của A= (x - 2)(x - 4)(x2 - 6x + 10)
5. Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng: HA + HB + HC < 2/3(AB + AC + BC)
Cho a/a+b+b/a+c+c/a+b=1. Chứng minh rằng: a2/b+c+b2/c+a+c2/a+b=0
Cho a+b=1, ab khác 0. Chứng minh rằng: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}\) = \(\frac{2\left(b-a\right)}{a^2b^2+3}\)
Cho 3 số a , b , c khác 0 thỏa mãn : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}=\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\)
Chứng minh rằng : a=b=c
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\). Chứng minh \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
cho a,b,c > 0 và a+b+c\(\le3\)
chứng minh rằng B=\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ac}\ge670\)
Cho ba số dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\) . Chứng minh rằng:
\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\) \(\geq\) 1