Lời giải:
Ta có:
\(10^3=1000\equiv 1\pmod {111}\)
\(\Rightarrow 10^{3n}\equiv 1^n\equiv 1\pmod {111}\)
\(\Rightarrow 10^{3n+1}\equiv 10\pmod {111}\)
Và: \(10^{6n}=(10^{3n})^2\equiv (1^n)^2\equiv 1\pmod {111}\)
\(\Rightarrow 10^{6n+2}\equiv 100\pmod {111}\)
Do đó:
\(A=10^{6n+2}+10^{3n+1}+1\equiv 100+10+1\equiv 111\equiv 0\pmod {111}\)
Hay \(A\vdots 111\)