cho x, y, z là các số dương thỏa mãn \(x\le1,y\le2\) và x + y + z = 6 chứng minh \(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge4xyz\)
mau nha cần gấp
1/Cho x,y là các số thực dương thỏa mãn: x+y≤4. Tìm GTNN \(P=\dfrac{x^4}{\left(y-1\right)^3}+\dfrac{y^4}{\left(x-1\right)^3}\)
2/ Cho x,y,z nguyên thỏa mãn :x+y+z=2013.Chứng minh:
\(Q=\left(x^2+xy+yz\right)^3+\left(y^2+yz+xz\right)^3+\left(z^2+xz+xy\right)^3⋮3\)
Bài 1: Cho a,b,c dương
a) Tìm Max \(P=\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\)
b) Tìm Max \(Q=\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(c+a\right)^2}+\frac{c^2}{5c^2+\left(a+b\right)^2}\)
Bài 2: Cho x,y,z là các số thực không âm thỏa mãn \(x+y+z=\frac{3}{2}\).Chứng minh rằng \(x+2xy+4xyz\le2\)
Bài 3: Cho a,b thỏa mãn \(\left(x+y\right)^3+4xy\ge2\). Tìm Min \(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1\)
Bài 4: Cho x,y,z >0: \(x\left(x+y+z\right)=3yz\). Chứng minh: \(\left(x+y\right)^3+\left(x+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)
Bài 5:Cho a,b,c không âm thỏa mãn \(a^2+b^2+c^2+abc=4\). CMR: \(a+b+c\le3\)
1. Cho x,y là các số thực dương thỏa mãn \(x+y=2.Cm\) \(x^2y^2\left(x^2+y^2\right)\le2\)
2. Cho x,y là các số dương thỏa mãn \(x+y=2.Cm\) \(x^3y^3\left(x^3+y^3\right)\le2\)
Cho 3 số thực x, y, z thỏa mãn \(\left|x-1\right|\le3;\left|y-2\right|\le670;\left|2\left(z+x-1\right)+y\right|\le6\)
Chứng minh rằng \(\left|xy+2z\right|\le2016\)
Cho x, y thỏa mãn \(0< x\le y\le2\) và \(2x+y\ge2xy\)
Tìm GTLN của
P = \(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
tìm các số nguyên x,y thỏa mãn pt:
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Tìm các cặp số nguyên (x,y) thỏa mãn điều kiện:
\(\left(x-2015\right)^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)