Với x, y là những số thực thoả mãn các điều kiện: \(0< x\le y\le2\) và \(2x+y\ge2xy\). tìm GTLN của biểu thức:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Với x,y là những số thực thỏa mãn các điều kiện \(0< x\le y\le2;2x+y\ge2xy\), tìm giá trị lớn nhất của biểu thức:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Cho x,y>0 thỏa mãn điều kiện \(\left|x-2y\right|\le\frac{1}{\sqrt{x}}\) và \(\left|y-2x\right|\le\frac{1}{\sqrt{y}}\). Tìm GTLN của biểu thức \(P=x^2+2y\).
cho x,y,z đôi một khác nhau sao cho \(0\le x,y,z\le2.\) Tìm GTNN của biểu thức
\(P=\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Cho x,y là các số thực thỏa mãn:\(\left\{{}\begin{matrix}0\le x\le y\le1\\2xy+y\le2\end{matrix}\right.\)
Chứng minh rằng: \(2x^2+y^2\le\frac{3}{2}\)
Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)