So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
So sánh 2 số: \(R=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(S=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Chứng minh rằng với mọi số nguyên dương n ta đều có \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+\dfrac{1}{5\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Rút gọn các biểu thức :
A=\(\dfrac{1}{\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
B= \(\dfrac{1}{1+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2015}+\sqrt{2017}}\)
giúp mk tính
a,\(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)
b,(\(\sqrt{5}+\sqrt{2}\)) (\(3\sqrt{2}-1\))
c,\(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
d, \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
e, \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
f, \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
bài 2
a, \(\sqrt{9-4\sqrt{5}}\)
b,\(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)
c\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
d, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
e,\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)+\(\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)
f, \(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
2 . rút gọn biểu thức
a. \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b. \(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
c. \(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\)
d. \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
e. \(5\sqrt{\dfrac{1}{5}+}\dfrac{1}{5}\sqrt{20}+\sqrt{5}\)
f. \(\sqrt{\dfrac{1}{5}}+\sqrt{4,5}+\sqrt{12,5}\)
g. \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\dfrac{1}{3}}\)
m. \(3\sqrt{5a}-\sqrt{20a}+\sqrt{a}+4\sqrt{45a}\)
n. \(3\sqrt{8}-\sqrt{18}-5\sqrt{\dfrac{1}{2}}+\sqrt{50}\)
i. \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}+\sqrt{63}-\sqrt{162}\)
CMR: \(\dfrac{4}{\sqrt{5}-1}+\dfrac{3}{\sqrt{5}-2}+\dfrac{16}{\sqrt{5}-3}=-5\)
Chứng minh:
\(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+.....+\dfrac{1}{\sqrt{97}+\sqrt{99}}>\dfrac{9}{4}\)
\(1,x=\sqrt{3-x}.\sqrt{4-x}+\sqrt{4-x}.\sqrt{5-x}+\sqrt{5-x}.\sqrt{3-x}\)
2) \(\dfrac{x^2-4}{x}+\dfrac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)