Ta có:
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+d}=\dfrac{a.b}{c.d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a+b}{c+d}.\dfrac{a+b}{c+d}=\dfrac{a.b}{c.d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng:Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)chứng minh
a).\(\dfrac{a^2-b^2}{c^2-d^2}\)=\(\dfrac{ab}{cd}\)
b)\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)=\(\dfrac{ab}{cd}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\).
Chứng minh :
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
b) \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Hãy chứng minh rằng :
\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
\(\dfrac{a+2c}{b+2d}=\dfrac{a-2c}{b-2d}\)
\(\dfrac{a^2+2b^2}{c^2+2d^2}=\dfrac{a^2-2b^2}{c^2-2d^2}\)
\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Bài 1. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh a/3a+b= c/3c+d
Bài 2. Cho a/b= c/d. Chứng minh: a. a^2 - b^2/c^2-d^2 = ab/cd
b. (a-b)^2/(c-d)^2 = ab/cd
Bài 3. Tìm x,y biết 2/x=3/y và xy= 96
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)CMR
\(\left(\dfrac{a-b}{c-d}\right)^2=\dfrac{ab}{cd}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)