Lời giải:
Ta có:
Với mọi \(n\in\mathbb{N}>1\Rightarrow 2n+1-\sqrt{n}=(\sqrt{n}-1)^2+n+\sqrt{n}>0\)
\(\Rightarrow 2n+1>\sqrt{n}\)
\(\Rightarrow 2(n+1)> \sqrt{n}+1\)
\(\Rightarrow 2(n+1)\sqrt{n}>(\sqrt{n}+1)\sqrt{n}\)
\(\Rightarrow \frac{1}{2(n+1)\sqrt{n}}< \frac{1}{\sqrt{n}(\sqrt{n}+1)}=\frac{\sqrt{n}+1-\sqrt{n}}{\sqrt{n}(\sqrt{n}+1)}\)
\(\Rightarrow \frac{1}{2(n+1)\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n}+1}\)
\(\Rightarrow \frac{1}{(n+1)\sqrt{n}}< \frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n}+1}\) (đpcm)