Cho a,b,c >0 thỏa mãn abc=1.Chứng minh:
\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\)
Câu 1: Giải phương trình :
\(\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2-9x+2}\right)=7\)
Câu 2: Tìm \(x;y\in Z\) biết \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Câu 3: Cho \(a,b,c\) là các số hữu tỉ thỏa mãn \(\frac{1}{a+bc}+\frac{1}{b+ca}=\frac{1}{a+b}\). Chứng minh \(\frac{c-3}{c+1}\) là bình phương của một số hữu tỉ
Câu 4: Cho 3 số \(a,b,c\) thỏa mãn \(0\le a\le b\le c\le1\).
Tìm \(maxB=\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
cho a,b,c là các số thực dương thỏa mãn abc=8. Chứng minh
\(\frac{a}{ca+4}+\frac{b}{ab+4}+\frac{c}{bc+4}\le\frac{1}{16}\left(a^2+b^2+c^2\right)\)
1 . Cho a,b,c thực dương t.m: a+b+c=2
CMR: \(P=\frac{ab}{\sqrt{\left(ab+2c\right)}}+\frac{bc}{\sqrt{\left(bc+2a\right)}}+\frac{ca}{\sqrt{\left(ca+2b\right)}}\le1\)
2 . Cho tam giác ABC nhọn có góc BAC> góc ACB. Đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại M,N,E. Gọi K là giao điểm của BO và NE. Chứng minh
a ) \(\widehat{AOB}=90^0+\frac{\widehat{ACB}}{2}\)
b )
b) 5 điểm A, M, K, O, E cùng thuộc một đường tròn
c Gọi T là giao điểm BO với AC. Chứng minh: KT.BN = KB.ET
Câu 1 a, Giải hệ phương trình \(\left\{{}\begin{matrix}3x^3-y^3=\frac{1}{x+y}\\x^2+y^2=1\end{matrix}\right.\)
b, Giải phương trình \(\sqrt{3-2x}+\sqrt[3]{5+3x}=3\)
c, Tìm nghiệm nguyên dương của phương trình \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)
Câu 2 a , Với a;b;c là 3 số thực đôi một phân biệt chứng minh rằng
\(\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}=\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}+3\)
b, So sánh A và 1 . biết A = \(\frac{9+\sqrt{9+\sqrt{9+\sqrt{9}}}}{9+\sqrt{9+\sqrt{9+\sqrt{9+\sqrt{9}}}}}\)
c, Chứng minh bc là số chính phương biết a,b,c là các số nguyên và thỏa mãn \(\frac{a^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}=\frac{2c}{b+c}\)
Câu 3 a, Cho tam giác ABC đều . Trên tia đối tia CB lấy D sao cho góc CAD = 15 độ . Đường thẳng vuông góc vơi BC tại C cắt AD ở E . Tia phân giác góc ABC cắt AD tại K . Chứng minh AK= DE
b, Cho tam giác ABC vuông tại A có góc B = 15 độ . Các điểm E , F lần lượt nằm trên các cạnh AC,AB sao cho góc ABE = 10 độ và góc ACF = 30 độ . Tính số đo góc CFE
c,Cho tam giác ABC trên tia BA lấy M , trên tia CA lấy N sao cho BM=CN. chứng minh đường trung trực của MN luôn đi qua 1 điểm cố định.
Câu 4 a, Tìm số nguyên tố p để p^3-4p+9 là số chính phương
b,Cho 2 đường thẳng (d1): mx+(m-2)y+m+2=0 và đường thẳng (d2): (2-m)x+my-m-2=0 . Chứng minh hai đường thẳng (d1) và (d2) luôn cắt nhau tại 1 điểm H và khi m thay đổi thì H luôn nằm trên 1 đường tròn cố định
Câu 5 Cho nửa đường tròn tâm O đường kính AB =2R.Gọi C là trung điểm AO . Vẽ tia Cx vuông với AB cắt nửa đường tròn tại I . Lấy K bất kì thuộc CI (K khác C và I).Tia AK cắt nửa đường tròn (O) tại M ; tia BM cắt tia Cx tại D . Vẽ tiếp tuyến nửa đường tròn (O) tại M cắt tia Cx tại N . chứng minh
a, Tam giác MNK cân b,Tính diện tích tam giác ABD theo R khi K là trung điểm CI
c, Khi K di động trên CI . Chứng minh rằng đường tròn ngoại tiếp tam giác AKD đi qua điểm cố định thứ hai khác A
Câu 6 a, Cho a,b,c>0 và a+b+c=3 Tính GTNN của E = \(\frac{1}{a^2b+2}+\frac{1}{b^2c+2}+\frac{1}{c^2a+2}\)
b, Cho a, b là các số thực thỏa a+b khác 0 . Chứng minh \(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\ge2\)
Cho a,b,c >0 thỏa mãn \(b^2+c^2\)≤\(a^2\)
Chứng minh rằng : \(\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)≥5
Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng:\(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 1: Cho các số a, b, c > 0 sao cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Tìm GTNN của Q = \(\sqrt{\frac{ab}{\left(a+bc\right)\left(b+ca\right)}}+\sqrt{\frac{bc}{\left(b+ca\right)\left(c+ab\right)}}+\sqrt{\frac{ca}{\left(c+ab\right)\left(a+bc\right)}}\)
Bài 2: Cho các số a, b, c > 0 sao cho \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\) .
a) CMR: \(\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{16}{\left(a+b\right)^3}\)
b) Tìm GTLN của: P = \(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)
Bài 3: Cho tam giác ABC nhọn nội tiếp (O). Gọi H là trực tâm tam giác. Chứng minh góc HAB = góc OAC.
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
1 . Cho a,b,c là các số thực dương. Chứng minh
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{1}{4}\left(a+b+c\right)\)
2 .
Cho a,b là hai số thực dương thỏa mãn: a+b≤1
Tìm giá trị nhỏ nhất của : \(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab\)