Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Thắng Hồ

Câu 1 a, Giải hệ phương trình \(\left\{{}\begin{matrix}3x^3-y^3=\frac{1}{x+y}\\x^2+y^2=1\end{matrix}\right.\)

b, Giải phương trình \(\sqrt{3-2x}+\sqrt[3]{5+3x}=3\)

c, Tìm nghiệm nguyên dương của phương trình \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)

Câu 2 a , Với a;b;c là 3 số thực đôi một phân biệt chứng minh rằng

\(\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}=\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}+3\)

b, So sánh A và 1 . biết A = \(\frac{9+\sqrt{9+\sqrt{9+\sqrt{9}}}}{9+\sqrt{9+\sqrt{9+\sqrt{9+\sqrt{9}}}}}\)

c, Chứng minh bc là số chính phương biết a,b,c là các số nguyên và thỏa mãn \(\frac{a^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}=\frac{2c}{b+c}\)

Câu 3 a, Cho tam giác ABC đều . Trên tia đối tia CB lấy D sao cho góc CAD = 15 độ . Đường thẳng vuông góc vơi BC tại C cắt AD ở E . Tia phân giác góc ABC cắt AD tại K . Chứng minh AK= DE

b, Cho tam giác ABC vuông tại A có góc B = 15 độ . Các điểm E , F lần lượt nằm trên các cạnh AC,AB sao cho góc ABE = 10 độ và góc ACF = 30 độ . Tính số đo góc CFE

c,Cho tam giác ABC trên tia BA lấy M , trên tia CA lấy N sao cho BM=CN. chứng minh đường trung trực của MN luôn đi qua 1 điểm cố định.

Câu 4 a, Tìm số nguyên tố p để p^3-4p+9 là số chính phương

b,Cho 2 đường thẳng (d1): mx+(m-2)y+m+2=0 và đường thẳng (d2): (2-m)x+my-m-2=0 . Chứng minh hai đường thẳng (d1) và (d2) luôn cắt nhau tại 1 điểm H và khi m thay đổi thì H luôn nằm trên 1 đường tròn cố định

Câu 5 Cho nửa đường tròn tâm O đường kính AB =2R.Gọi C là trung điểm AO . Vẽ tia Cx vuông với AB cắt nửa đường tròn tại I . Lấy K bất kì thuộc CI (K khác C và I).Tia AK cắt nửa đường tròn (O) tại M ; tia BM cắt tia Cx tại D . Vẽ tiếp tuyến nửa đường tròn (O) tại M cắt tia Cx tại N . chứng minh

a, Tam giác MNK cân b,Tính diện tích tam giác ABD theo R khi K là trung điểm CI

c, Khi K di động trên CI . Chứng minh rằng đường tròn ngoại tiếp tam giác AKD đi qua điểm cố định thứ hai khác A

Câu 6 a, Cho a,b,c>0 và a+b+c=3 Tính GTNN của E = \(\frac{1}{a^2b+2}+\frac{1}{b^2c+2}+\frac{1}{c^2a+2}\)

b, Cho a, b là các số thực thỏa a+b khác 0 . Chứng minh \(a^2+b^2+\left(\frac{1+ab}{a+b}\right)^2\ge2\)


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
le duc minh vuong
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết