Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Trang Uyên

Chứng minh :

A =\(\dfrac{1}{2}+\dfrac{1}{33}+\dfrac{1}{34}+\dfrac{1}{35}+\dfrac{1}{51}+\dfrac{1}{53}+\dfrac{1}{55}+\dfrac{1}{57}+\dfrac{1}{59}\)<\(\dfrac{7}{10}\)

Akai Haruma
5 tháng 5 2018 lúc 23:38

Lời giải:

\(A=\frac{1}{2}+\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}\)

Ta có:

\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{3}{30}=\frac{1}{10}\)

\(\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}=\frac{5}{50}=\frac{1}{10}\)

Cộng theo vế:

\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{2}{10}=\frac{1}{5}\)

Suy ra \(A< \frac{1}{2}+\frac{1}{5}=\frac{7}{10}\)

Ta có đpcm.


Các câu hỏi tương tự
Thảo Vy
Xem chi tiết
Ly Hoàng
Xem chi tiết
Hà My Lê Phan
Xem chi tiết
dream XD
Xem chi tiết
thuỳ handan
Xem chi tiết
Đỗ Hàn Thục Nhi
Xem chi tiết
hello hello
Xem chi tiết
Nguyễn Ngọc Bảo Quang
Xem chi tiết
dream XD
Xem chi tiết