1)chứng minh
a)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b)\(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=6\)
2)chứng minh
a)\(8-2\sqrt{7}=\left(\sqrt{7}-1\right)^2\)
b)\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=2\)
CMR:
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
c) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)
d) \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}=3\)
Chứng minh rằng:
a, \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=1\)
b, \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
Rút gọn biểu thức:
\(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(B=3\sqrt{\left(1,5\right)^2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)
Chứng minh :
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
Chứng minh:
a)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
b)\(8-2\sqrt{7}=\left(\sqrt{7}-1\right)^2\)
Bài 1 :Chứng minh các đẳng thức :
a ) \(2\sqrt{2}\left(\sqrt{3}-2\right)\) + \(\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b ) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c ) \(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}=6\)
Bài 2 : Rút gọn các biểu thức sau :
a ) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
b ) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
Bài 3 : Rút gọn các biểu thức sau :
a ) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b ) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c ) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d ) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right):\frac{1}{8}\)
1. \(\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\) .
2. \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}.}\)
3. \(\sqrt{11}-\sqrt{20-6\sqrt{11}}=3\)
4.\(\sqrt{41+12\sqrt{5}}-\sqrt{41-12\sqrt{5}}=2\sqrt{5.}\)