\(y'=3x^2+2x+m+1\)
Để hàm số có 2 cực trị \(\Leftrightarrow\Delta'=1-3\left(m+1\right)>0\Leftrightarrow m< -\frac{2}{3}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_{CĐ}+x_{CT}=-\frac{2}{3}\\x_{CĐ}.x_{CT}=\frac{m+1}{3}\end{matrix}\right.\)
a/ Để biểu thức bài toán xác định \(\Rightarrow m\ne-1\)
\(\frac{x_{CĐ}+x_{CT}}{x_{CĐ}.x_{CT}}=3\Leftrightarrow\frac{-\frac{2}{3}}{\frac{m+1}{3}}=3\Leftrightarrow m+1=-\frac{2}{3}\Rightarrow m=-\frac{5}{3}\)
b/ Để hai cực trị cùng âm \(\Leftrightarrow\left\{{}\begin{matrix}x_{CĐ}+x_{CT}=-\frac{2}{3}< 0\\x_{CĐ}.x_{CT}=m+1>0\end{matrix}\right.\)
\(\Leftrightarrow-1< m< -\frac{2}{3}\)
c/ Do \(x_{CĐ}+x_{CT}=-\frac{2}{3}< 0\) nên ko tồn tại m để hàm số có 2 cực trị cùng dương