\(\dfrac{2011x}{xy+2011x+2011}+\dfrac{y}{yz+y+2011}+\dfrac{z}{xz+z+x}\)
\(=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)
\(=\dfrac{xz}{1+xz+z}+\dfrac{1}{1+xz+z}+\dfrac{z}{1+xz+z}\)
\(=\dfrac{xz+1+z}{1+xz+z}\)
\(=1\) ( Đpcm )
Bài này biến đổi cơ bản thế quái nào câu hỏi hay
Ta có: xyz = 2011
=>\(\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\)
=> \(\dfrac{x^2yz}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)
=>\(\dfrac{xz}{xz+1+z}+\dfrac{1}{xz+1+z}+\dfrac{z}{xz+1+z}\)
=>\(\dfrac{xz+1+z}{xz+1+z}\)=1