\(\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)
\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+xyz}+\dfrac{xy}{xy+xyz+xyzx}\)
\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+1}+\dfrac{xy}{xy+1+x}\) (Do xyz = 1)
\(=1\).
\(\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)
\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+xyz}+\dfrac{xy}{xy+xyz+xyzx}\)
\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+1}+\dfrac{xy}{xy+1+x}\) (Do xyz = 1)
\(=1\).
Cho \(x,y,z\ne-1\). Giá trị của biểu thức \(A=\dfrac{xy+2x+1}{xy+x+y+1}+\dfrac{yz+2y+1}{yz+y+z+1}+\dfrac{zx+2x+1}{zx+x+z+1}\).
Cho xyz=2019. Tính giá trị biểu thức \(A=\dfrac{2019x}{xy+2019x+2019}+\dfrac{y}{yz+y+2019}+\dfrac{z}{xz+z+1}\)
Cho x,y,z \(\ne\) -1. Tính giá trị của \(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+x+z+1}\)
Cho biểu thức A=\(\dfrac{xy+2y+1}{xy+x+y+1}+\dfrac{yz+2z+1}{yz+y+z+1}+\dfrac{zx+2x+1}{zx+z+x+1}\) với x,y,z là các số thực có giá trị khác -1. Chứng minh A nguyên
cho các số x,y,z thỏa mãn x+y+z=2018. Tính giá trị của biểu thức
A=(xy+yz+zx)(\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) +\(\dfrac{1}{z}\)) -xyz (\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\)+\(\dfrac{1}{z^2}\))
x,y,z > 0 t/m xyz =1 . C/m 1/x+y+z + 1/3 ≥ 2/xy+yz+zx
Tính giá trị biểu thức M=(x/xy+x+2019)+(y/yz+y+1)+(z/zx+2019+z) +2019
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho ba số x,y,z thõa: xyz=1 tính:
\(M=\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)