cho x,y,z ≥ 0 thỏa mãn x^2 +y^2 +z^2 =1. tìm GTNN, GTLN của T = x/1-yz + y/1-zx + z/1-xy
cho x+y+z=3 tim gtln cua bieu thuc P=xy+yz+zx
cho x, y, z là 3 số thực dương có tổng bằng 10. Tìm GTNN của biểu thức P= xy/z+yz/x+zx/y
Cho \(x,y,z>0\) thỏa mãn \(xy+yz+zx\ge3\)
Tìm GTNN của \(P=\frac{x^3}{1+y}+\frac{y^3}{1+z}+\frac{z^3}{1+x}\)
Chứng minh rằng: \(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{z-x}{1+zx}=\frac{x-y}{1+xy}\cdot\frac{y-z}{1+yz}\cdot\frac{z-x}{1+zx}\)
x,y,z >0 thỏa mãn xy+ yz+zx ≥3
Tìm GTNN của P=\(\frac{x^3}{1+x}+\frac{y^3}{1+y}+\frac{z^3}{1+z}\)
Giúp mình với ☺
Cho x,y,z \(\ne\) -1. Tính giá trị của \(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+x+z+1}\)
Cho x,y,z là các số thực dương. Tìm giá trị lớn nhất của:
\(Q=\frac{xy}{x^2+xy+yz}+\frac{yz}{y^2+yz+zx}+\frac{zx}{z^2+zx+xy}\)
Cho x,y z > 0 thoa mãn xy + yz + zx = 3. Tìm GTNN của P = 15x2 + 15y2 + z2