Cách khác:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{x^4}{x+xy}+\frac{y^4}{y+yz}+\frac{z^4}{z+zx}\geq \frac{(x^2+y^2+z^2)^2}{x+y+z+xy+yz+xz}\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2+z^2\geq xy+yz+xz(1)\)
\(\Rightarrow 2(x^2+y^2+z^2)\geq 2(xy+yz+xz)\)
\(\Rightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2\)
\(\Rightarrow (x+y+z)^2\leq 3(x^2+y^2+z^2)\leq (xy+yz+xz)(x^2+y^2+z^2)\leq (x^2+y^2+z^2)^2\)
\(\Rightarrow x+y+z\le x^2+y^2+z^2(2)\)
Từ $(1);(2)$ suy ra:
\(P\geq \frac{(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)}=\frac{x^2+y^2+z^2}{2}\geq \frac{xy+yz+xz}{2}\geq \frac{3}{2}\)
Vậy $P_{\min}=\frac{3}{2}$
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{x^3}{y+1}.\frac{y+1}{4}.\frac{1}{2}}=\frac{3x}{2}\)
\(\frac{y^3}{z+1}+\frac{z+1}{4}+\frac{1}{2}\geq \frac{3y}{2}\)
\(\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\geq \frac{3z}{2}\)
Cộng theo vế và thu gọn:
\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)\geq 9\)
\(\Rightarrow x+y+z\geq 3\)
\(\Rightarrow P\geq \frac{5}{4}(x+y+z)-\frac{9}{4}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$