\(\dfrac{1}{2x}+\dfrac{1}{y}+\dfrac{1}{3z}=0\)
⇔ \(\dfrac{3yz+6xz+2xy}{6xyz}=0\)
⇔ 3yz + 6xz + 2xy = 0 (do x; y; z ≠ 0)
⇔ 2(3yz + 6xz + 2xy) = 0
Ta có:
2x + y + 3z = -4
⇔ (2x + y + 3z)2 = (-4)2
⇔ 4x2 + y2 + 9z2 + 2(2xy + 3yz + 6xz) = 16
⇔ 4x2 + y2 + 9z2 + 0 = 16 (do 2(3yz + 6xz + 2xy) = 0)
⇔ 4x2 + y2 + 9z2 = 16
Hay P = 16
Vậy P = 16