Đặt \(\left\{{}\begin{matrix}y-x=a>0\\z-y=b>0\end{matrix}\right.\) \(\Rightarrow z-x=a+b\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge0\\z\le2\end{matrix}\right.\) \(\Rightarrow z-x\le2\Rightarrow a+b\le2\)
Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{\left(a+b\right)^2}\)
\(P\ge\frac{1}{2}\left(\frac{4}{a+b}\right)^2+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{4}\)
\(P_{min}=\frac{9}{4}\) khi \(a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\)