Bạn tham khảo :
Ta có \(x+y=m+n\)
⇒ \(y=m+n-x\)
Thay vào S ta có
\(S=x^2+\left(m+n-x\right)^2+m^2+n^2\)
⇒ \(S=x^2+m^2+n^2+x^2+2mn-2mx-2nx+m^2+n^2\)
⇒ \(S=\left(x^2-2mx+m^2\right)+\left(n^2+m^2+2mn\right)+\left(n^2-2nx+x^2\right)\)
⇒ \(S=\left(x-m\right)^2+\left(n-x\right)^2+\left(n+m\right)^2\)
Mà x,y,m,n∈Z
=> S luôn là tổng bình phương của 3 số nguyên