\(x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)
\(A=1+\dfrac{2}{x}+\dfrac{1}{x^2}+1+\dfrac{2}{y}+\dfrac{1}{y^2}=2+2\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(\Rightarrow A\ge2+\dfrac{8}{x+y}+\dfrac{2}{xy}\ge18\)
\(\Rightarrow A_{min}=18\) khi \(x=y=\dfrac{1}{2}\)