- Nếu \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow Q=1\)
- Với \(x;y>0\Rightarrow Q=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+x+y}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
\(Q_{min}=\frac{2}{3}\) khi \(x=y=\frac{1}{2}\)