Lời giải:
Đặt \(\log_9x=\log_6y=\log_4\left(\frac{x+y}{6}\right)=t\)
\(\Rightarrow \left\{\begin{matrix} x=9^t\\ y=6^t\\ x+y=6.4^t\end{matrix}\right.\)
\(\Rightarrow 9^t+6^t=6.4^t\)
\(\Leftrightarrow \left(\frac{9}{6}\right)^t+1=6.\left(\frac{4}{6}\right)^t\)
\(\Leftrightarrow \left(\frac{3}{2}\right)^t+1=6.\left(\frac{2}{3}\right)^t\)
Đặt \(\left(\frac{3}{2}\right)^t=a\Rightarrow a+1=6.\frac{1}{a}\)
\(\Leftrightarrow a^2+a-6=0\Leftrightarrow a=2\) hoặc $a=-3$
Mà \(a>0\Rightarrow a=2\)
Ta có: \(\frac{x}{y}=\frac{9^t}{6^t}=\left(\frac{9}{6}\right)^t=\left(\frac{3}{2}\right)^t=a=2\)
Vậy \(\frac{x}{y}=2\)