Bài 1: Căn bậc hai

michelle holder

cho x,y dương thỏa \(\left(x+y-1\right)^2=xy\)

tìm MIN \(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}+\dfrac{\sqrt{xy}}{x+y}\)

Neet
3 tháng 5 2017 lúc 13:17

ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)

\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)

\(\Leftrightarrow xy\le1\)

\(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)

\(\Leftrightarrow0\le x+y\le2\).

\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

Áp dụng bất đẳng thức cauchy dạng phân thức:

\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)

\(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))

\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))

Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)

từ (*) và (**) ta có \(VT\ge1+1=2\)

đẳng thức xảy ra khi x=y=1

Bình luận (4)

Các câu hỏi tương tự
michelle holder
Xem chi tiết
~^.^~
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
Nguyễn Ngọc Tâm
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
michelle holder
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Neko Chan
Xem chi tiết
Hồ Minh Phi
Xem chi tiết