\(A=-x^3+2x^2+32-32=\left(4-x\right)\left(x^2+2x+8\right)-32\)
Do \(x\le4\Rightarrow\left\{{}\begin{matrix}4-x\ge0\\x^2+2x+8=\left(x+1\right)^2+7>0\end{matrix}\right.\)
\(\Rightarrow\left(4-x\right)\left(x^2+2x+8\right)\ge0\Rightarrow A\ge-32\)
\(\Rightarrow A_{min}=-32\) khi \(x=4\)