a/\(A=\frac{x^2+4x+4}{\left(x^2-4x+4\right)\left(x-2\right)}=\frac{x^2-4x+4+8x}{\left(x^2-4x+4\right)\left(x-2\right)}=\frac{1}{x-2}+\frac{8x}{\left(x-2\right)^3}\)
\(\Rightarrow x-2\in\left(1,-1\right)\)( vừa TM Ư(1) và Ư(8x) vậy x=3,1
a/\(A=\frac{x^2+4x+4}{\left(x^2-4x+4\right)\left(x-2\right)}=\frac{x^2-4x+4+8x}{\left(x^2-4x+4\right)\left(x-2\right)}=\frac{1}{x-2}+\frac{8x}{\left(x-2\right)^3}\)
\(\Rightarrow x-2\in\left(1,-1\right)\)( vừa TM Ư(1) và Ư(8x) vậy x=3,1
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Cho biểu thức \(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính GTBT A tại \(\left|x\right|=\frac{1}{2}\)
\(c,Tìm\) giá trị của x để A < 0.
d, Tìm \(x\in Z\) để \(A\in Z\)
Cho a, b > 0. Tìm GTNN của A = \(\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}\)
Cho biểu thức A= \(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}\) với \(x\ne2\) và \(x\ne-3\)
a) Rút gọn A
b) Tính A khi x = 5
c)Tìm x thuộc Z để A thuộc Z
a) CMR biểu thức ko âm với mọi x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
b) Tính giá trị của biểu thức
E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}\) + \(\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}\) +\(\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết 1-\(\frac{x^2}{abc}\) =0
a)Tìm GTNN của \(\left(x+1\right)^2+2\left(x+1\right)^4\)
b)Tìm GTNN của \(\left(x-1\right)^4+\left(x+5\right)^4-123\)
Cho \(A=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) CM giá trị của A ko phụ thuộc x
b) Tìm minA
a, Cho a+b=1. Tính giá trị của biểu thức \(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
b, Tìm a để đa thức \(4x^4+2x^2+a\) chia hết cho đa thức x - 2
c, Tìm giá trị của x và y để biểu thức sau đạt giá trị nhỏ nhất (GTNN). Tìm GTNN đó \(A=x^2-17+4y^2+8x+4y\)
d, Tìm x biết : \(\left(x+1\right)\left(2-x\right)-\left(3x+5\right)\left(x+2\right)=-4x^2+2\) ; \(x^2-5x-3=0\)
e, Chứng minh : \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
f, Tính \(\left(a-b\right)^{2015}\) biết a + b = 9; a . b = 20 và a < b
g, CMR : \(A=2x^2-6xy+9y^2-12x+2017>0\) với mọi giá trị của x, y
rút gọn các phân thức
a) \(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\) d) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)
b) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\) c) \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)
e)\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}\)