\(x\in\left[-\frac{\pi}{3};\frac{2\pi}{3}\right]\Rightarrow cosx\in\left[-\frac{1}{2};1\right]\)
\(x\in\left[-\frac{\pi}{3};\frac{2\pi}{3}\right]\Rightarrow cosx\in\left[-\frac{1}{2};1\right]\)
cho \(x\in\left[-\frac{\pi}{4};\frac{\pi}{2}\right]\). Giá trị lượng giác \(cos\left(x-\frac{3\pi}{4}\right)\) thuộc tập nào?
cho \(x\in\left[-\pi;\frac{2\pi}{3}\right]\). Giá trị biểu thức \(T=sin2x\) thuộc tập nào?
1. Chứng minh rằng: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
2. Chứng minh biểu thức sau không phụ thuộc \(x\): \(A=sin\left(\frac{\pi}{4}+x\right)-cos\left(\frac{\pi}{4}-x\right)\), nếu \(cosx=\frac{1}{2}\) với \(\frac{3\pi}{2}< x< 2\pi\)
\(cosx+cos\left(x+\frac{\pi}{5}\right)+cos\left(x+\frac{2\pi}{5}\right)+...+cos\left(x+\frac{9\pi}{5}\right)\)
Với mọi giá trị của , biểu thức trên nhận giá trị nào ?
Chứng minh biểu thức sau không phụ thuộc vào x \(cos\left(x-\frac{\pi}{3}\right)cos\left(x+\frac{\pi}{4}\right)+cos\left(x+\frac{\pi}{6}\right)cos\left(x+\frac{3\pi}{4}\right)\)
CMR
\(\frac{\sqrt{2}cosx-2cos\left(\frac{\pi}{4}+x\right)}{2sin\left(\frac{\pi}{4}+x\right)-\sqrt{2}sinx}=tanx\)
\(\cos\left(5\Pi+x\right)+\sin\left(\frac{9\Pi}{2}-x\right)-\tan\left(\frac{3\Pi}{2}+x\right)\cot\left(\frac{3\Pi}{2}-x\right)\)
Rút gọn các biểu thức sau:
1) \(A=2cosx+3cosx\left(\pi-x\right)-sin\left(\frac{7\pi}{2}-x\right)+tan\left(\frac{3\pi}{2}-x\right)\)
2) \(B=2sin\left(\frac{\pi}{2}+x\right)+sin\left(5\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
Cho tan(π + x) = - \(\frac{3}{4}\)và - \(\frac{\pi}{2}< x< 0\). Tính các giá trị lượng giác: sinx, cosx, cotx