Lời giải:
Ta có:
\(\left\{\begin{matrix} x+y=\sqrt{7}\\ xy=\frac{(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})}{4}=1\end{matrix}\right.\)
Khi đó: \(P=\frac{1}{x^5}+\frac{1}{y^5}=\frac{x^5+y^5}{(xy)^5}=x^5+y^5\)
\(P=(x^3+y^3)(x^2+y^2)-x^2y^3-x^3y^2\)
\(=[(x+y)^3-3xy(x+y)][(x+y)^2-2xy]-x^2y^2(x+y)\)
\(=[7\sqrt{7}-3\sqrt{7}](7-2)-\sqrt{7}\)
\(=19\sqrt{7}\)