Lời giải:
Vì $y>0$ nên \(x-y=x^3+y^3>x^3-y^3\)
\(\Rightarrow x-y>(x-y)(x^2+xy+y^2)\)
\(\Rightarrow (x-y)(x^2+xy+y^2-1)<0\)
Mà \(x-y=x^3+y^3>0\Rightarrow x^2+xy+y^2-1<0\)
\(\Rightarrow x^2+xy+y^2<1\)
\(\Rightarrow x^2+y^2< x^2+xy+y^2 < 1 \) (đpcm)