\(xy\ne0,x,y\ne1\)
\(A=\dfrac{x^{ }}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x+y\right)}{x^2y^2+3}\)
\(xét:\dfrac{2\left(x+y\right)}{x^2y^2+3}=\dfrac{2}{x^2y^2+3}\left(1\right)\)
\(\dfrac{x^{ }}{y^3-1}-\dfrac{y}{x^3-1}=\dfrac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}\left(2\right)\)
\(xét:\) \(x^4-x-y^4+y=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3-1\right)\)
\(=\left(x-y\right)\left[\left(x+y\right)^3-3xy\left(x+y\right)+xy\left(x+y\right)-1\right]\)
\(=\left(x-y\right)\left(1-3xy+xy-1\right)\)
\(=\left(x-y\right)\left(-2xy\right)=-2xy\left(x-y\right)=2xy\)
\(xét\) \(\left(y^3-1\right)\left(x^3-1\right)=x^3y^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)
\(=x^3y^3-\left(1-3xy\right)+1=x^3y^3+3xy=xy\left(x^2y^2+3\right)\)
\(\Rightarrow\left(2\right)\Leftrightarrow\dfrac{-2\left(x-y\right)}{x^2y^2+3}\)
\(\left(1\right)\left(2\right)\Rightarrow A=\dfrac{2}{x^2y^2+3}-\dfrac{2\left(x-y\right)}{x^2y^2+3}=\dfrac{2-2x+2y}{x^2y^2+3}\ne0\left(đề-sai\right)\)