\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)
\(M=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\frac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)}{xy}\)
\(M=\frac{xy+x+y+1}{xy}=\frac{xy+2}{xy}=1+\frac{2}{xy}\ge1+2.4=9\)
\(\Rightarrow M_{min}=9\) khi \(x=y=\frac{1}{2}\)