Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Cho x,y,z > 0 thỏa mãn x+y+z =1 . Tìm giá trị nhỏ nhất của biểu thức
M = \(\sqrt{\frac{1}{x^2}+x^2}+\sqrt{\frac{1}{y^2}+y^2}+\sqrt{\frac{1}{z^2}+z^2}\)
Cho biểu thức: P = (\(\frac{2}{\sqrt{xy}}\) + \(\frac{1}{x}\)+ \(\frac{1}{y}\)). \(\frac{\sqrt{xy}\left(x+y\right)-xy}{x\sqrt{x}+y\sqrt{y}}\) (với x > 0; y > 0)
1. Rút gọn biểu thức P
2. Biết xy = 16. Tìm giá trị nhỏ nhất của P
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho x,y>0 thỏa mãn điều kiện \(\left|x-2y\right|\le\frac{1}{\sqrt{x}}\) và \(\left|y-2x\right|\le\frac{1}{\sqrt{y}}\). Tìm GTLN của biểu thức \(P=x^2+2y\).
Đây là tổng hợp 1 số câu khó mà mình tìm được trong quá trình giải đề, nhưng vì khó nên các bạn bày mình với >.<!!
Câu 1: Cho a, b, c là ba số thực dương thỏa mãn điều kiện \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
Câu 2: Cho các số x, y dương thỏa mãn điều kiện \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\). Tìm giá trị nhỏ nhất của biểu thức \(P=x+y\)
Câu 3: Cho hàm số \(y=\frac{x^2+2}{x+2}\). Tìm tất cả các giá trị x nguyên để y nguyên.
Câu 4:
1) Cho các số a, b, c thỏa mãn điều kiện \(a+2b+5c=0\). Chứng minh phương trình \(ax^2+bx+c=0\)có nghiệm.
2) Giải phương trình \(\left(4x^3-x+3\right)^3=x^3:\frac{3}{2}\)
Cho 2 số thực x ; y thỏa mãn 0 < x ≤ 1 , 0 < y ≤ 1 và x + y = 3xy . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 + y2 - 4xy
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)