\(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)
\(A=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)\left(x-1\right)\left(y-1\right)}{x^2y^2}=\frac{\left(xy+x+y+1\right)xy}{x^2y^2}\)
\(=\frac{xy+2}{xy}=1+\frac{2}{xy}\ge1+2.4=9\)
\(A_{min}=9\) khi \(x=y=\frac{1}{2}\)