cho x,y,z≥0 thỏa mãn x+y+z=3
Tìm GTNN của P=\(\frac{\left(y+z\right)^2}{x}\)+\(\frac{\left(z+x\right)^2}{y}\)+\(\frac{\left(x+y\right)^2}{z}\)
Cho x,y,z>0 thỏa mãn x+y+z=18√2
CM: \(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{1}{4}\)
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
do x,y,z≥0 nên x2≥0 , y+z≥0
áp dụng bất đẳng thức cosi cho 2 số dương \(\dfrac{x^2}{y+z}\) và y+z/4
x^2/y+z +(y+z)/4≥2\(\sqrt{\dfrac{x^2}{y+z}.\dfrac{\left(y+z\right)}{4}}\) =x (1)
y^2/x+z+(x+z)/4≥2\(\sqrt{\dfrac{y^2}{x+z}.\dfrac{x+z}{4}}\) =y (2)
z^2/y+x+(y+x)/4≥2\(\sqrt{\dfrac{z^2}{y+x}.\dfrac{y+x}{4}}\) =z (3)
từ (1)(2)(3)
➜\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)+(y+z/4)+(z+x)/4+(x+y)/4 ≥ x+y+z
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) +(a+b+c)/2 ≥x+y+z
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥ (x+y+z)/2
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥1 (vì x+y+z=2)
vậy giá trị nhỏ nhất của \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) =1
cho \(y\ge z\ge x\ge0\) và thỏa mãn \(\sqrt{x}+\sqrt{y-x}+\sqrt{z-x}=\frac{1}{2}\left(y+3\right)\) chứng minh x+y+z=xyz
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho x,y,z > 0. Chứng minh : \(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\)≥\(\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)