Lời giải:
Áp dụng BĐT AM-GM:
\(3xyz=x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}\)
\(\Rightarrow xyz\geq \sqrt[3]{x^2y^2z^2}\Rightarrow xyz\geq 1\)
Do đó: \(x+y+z\geq 3\sqrt[3]{xyz}\geq 3\sqrt[3]{1}=3\)
Khi đó, áp dụng BĐT Cauchy-Schwarz (hay vẫn gọi là Svac-so ) ta có:
\(\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\geq \frac{(x+y+z)^2}{y+2+z+2+x+2}=\frac{(x+y+z)^2}{x+y+2+6}\geq \frac{(x+y+z)^2}{3(x+y+z)}=\frac{x+y+z}{3}\geq \frac{3}{3}=1\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$