Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uchiha Itachi

Cho x + y + z = 0. Tính A = \(\frac{\left(xy+2z^2\right)\left(yz+2x^2\right)\left(zx+2y^2\right)}{\left(2xy^2+2yz^2+2zx^2+3xyz\right)^2}\)

Akai Haruma
12 tháng 8 2020 lúc 13:49

Lời giải:

Xét mẫu thức:

$2xy^2+2yz^2+2zx^2+3xyz=(xy^2+yz^2+zx^2)+(xy^2+xyz)+(yz^2+xyz)+(xz^2+xyz)$

$=xy^2+yz^2+zx^2+xy(y+z)+yz(z+x)+xz(x+y)$

$=xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)$

$=(x-y)(y-z)(z-x)$

$\Rightarrow (2xy^2+2yz^2+2zx^2)^2=(x-y)^2(y-z)^2(z-x)^2$

Xét tử thức:

$(xy+2z^2)(yz+2x^2)(xz+2y^2)$

$=[xy+z^2-z(x+y)][yz+x^2-x(z+y)][xz+y^2-y(x+z)]$

$=(z-x)(z-y)(x-y)(x-z)(y-x)(y-z)=-(x-y)^2(y-z)^2(z-x)^2$

Do đó: $A=-1$


Các câu hỏi tương tự
dia fic
Xem chi tiết
nam do
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
Kakarot Songoku
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
hakito
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Như Trần
Xem chi tiết