Cho tứ giác lồi ABCD thỏa mãn \(\widehat{BAD}+\widehat{BCD}=180^0\). Gọi I là giao điểm của AC và BD. Gọi M là trung điểm của đoạn thẳng AB, và N là trung điểm của đoạn thẳng CD.
Chứng minh rằng \(\widehat{AIM}=\widehat{DIN}\) .
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ cho em với ạ! Em cám ơn nhiều lắm ạ!
-Bài hình chẳng ai phụ trách giùm mình hết :v (đặc biệt là hình nâng cao).
-Mình cũng xin lỗi vi tối mới làm đc cho bạn nhé.
-Gọi E là giao của AD và BC.
\(\widehat{BAE}=180^0-\widehat{BAD}=\widehat{BCD}\)
\(\Rightarrow\)△ABE∼△CDE (g-g).
\(\Rightarrow\dfrac{AE}{CE}=\dfrac{BE}{DE}\Rightarrow\dfrac{AE}{BE}=\dfrac{CE}{DE}\Rightarrow\)△EAC∼△EBD (c-g-c).
\(\Rightarrow\widehat{ICB}=\widehat{IDA}\Rightarrow\)△IBC∼△IAD (g-g)
\(\Rightarrow\dfrac{IB}{IA}=\dfrac{IC}{ID}\Rightarrow\dfrac{IB}{IC}=\dfrac{IA}{ID}\Rightarrow\)△AIB∼△DIC (c-g-c)
\(\Rightarrow\widehat{IAM}=\widehat{IDN};\dfrac{IA}{ID}=\dfrac{AB}{DC}\Rightarrow\dfrac{IA}{ID}=\dfrac{MA}{ND}\Rightarrow\dfrac{IA}{MA}=\dfrac{ID}{ND}\)
\(\Rightarrow\)△AIM∼△DIN (c-g-c) \(\Rightarrow\widehat{AIM}=\widehat{DIN}\)