Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Kim Oanh

Cho tứ giác lồi  ABCD thỏa mãn   \(\widehat{BAD}+\widehat{BCD}=180^0\).  Gọi I là giao điểm của  AC và  BD. Gọi M là trung điểm của đoạn thẳng  AB, và N là trung điểm của đoạn thẳng   CD.
Chứng minh rằng  \(\widehat{AIM}=\widehat{DIN}\)   .
P/s:  Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ cho em với ạ! Em cám ơn nhiều lắm ạ!undefined

Trần Tuấn Hoàng
18 tháng 4 2022 lúc 20:55

-Bài hình chẳng ai phụ trách giùm mình hết :v (đặc biệt là hình nâng cao).

-Mình cũng xin lỗi vi tối mới làm đc cho bạn nhé.

-Gọi E là giao của AD và BC.

\(\widehat{BAE}=180^0-\widehat{BAD}=\widehat{BCD}\)

\(\Rightarrow\)△ABE∼△CDE (g-g).

\(\Rightarrow\dfrac{AE}{CE}=\dfrac{BE}{DE}\Rightarrow\dfrac{AE}{BE}=\dfrac{CE}{DE}\Rightarrow\)△EAC∼△EBD (c-g-c).

\(\Rightarrow\widehat{ICB}=\widehat{IDA}\Rightarrow\)△IBC∼△IAD (g-g)

\(\Rightarrow\dfrac{IB}{IA}=\dfrac{IC}{ID}\Rightarrow\dfrac{IB}{IC}=\dfrac{IA}{ID}\Rightarrow\)△AIB∼△DIC (c-g-c)

\(\Rightarrow\widehat{IAM}=\widehat{IDN};\dfrac{IA}{ID}=\dfrac{AB}{DC}\Rightarrow\dfrac{IA}{ID}=\dfrac{MA}{ND}\Rightarrow\dfrac{IA}{MA}=\dfrac{ID}{ND}\)

\(\Rightarrow\)△AIM∼△DIN (c-g-c) \(\Rightarrow\widehat{AIM}=\widehat{DIN}\)

 


Các câu hỏi tương tự
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Kiên Đặng
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Pandazi Đào
Xem chi tiết
Hà Anh Nguyễn
Xem chi tiết