Bài 1: Cho hình vuông ABCD và hai đường chéo AC và BD cắt nhau tại O. Lây điểm N thuộc đoạn AC sao cho AN = ½ NC. DN cắt AB tại I. a) Chứng minh: tam giác ANI đồng dạng với tam giác CND b) Chứng minh: OI// AD c) Gọi E là trung điểm của đoạn OA, đường thắng DE cắt AB tại F. Chứng minh AFN = AEI d) Chứng minh: DE. DF = DN. DI
a) Xét ΔANI và ΔCND có
\(\widehat{ANI}=\widehat{CND}\)(hai góc đối đỉnh)
\(\widehat{IAN}=\widehat{DCN}\left(=45^0\right)\)
Do đó: ΔANI\(\sim\)ΔCND(g-g)