a: Xét ΔAHB vuông tại H có cos B=HB/AB
=>AB=2a
=>BC=4a
=>\(AC=2a\sqrt{3}\)
b: BK*BD=BA^2
BH*BC=BA^2
Do đó: BK*BD=BH*BC
=>BH/BK=BD/BC
=>ΔBHD đồng dạng với ΔBKC
=>\(\dfrac{S_{BHD}}{S_{BKC}}=\left(\dfrac{BH}{BK}\right)^2=\left(\dfrac{AB}{2}:BK\right)^2=\dfrac{1}{4}\cdot\dfrac{AB^2}{BK^2}=\dfrac{1}{4}\cdot cos^2ABD\)
=>\(S_{BHD}=\dfrac{1}{4}\cdot S_{BKC}\cdot cos^2ABD\)