Bài 2. Cho tam giác ABC vuông tại A
a) Biết hai trung tuyến BN= 4cm; AM= 3cm. Tính các cạnh của tam giác ABC
b) Biết AB= a, hai đường trung tuyến AM, BN vuông góc với nhau. Tính hai cạnh AC, BC theo a
c) Biết BC= 2a, BM, CN là hai trung tuyến. Tính MB^2 + NC^2 theo a, từ đó tìm GTLN của MB+ NC theo a
Cho ΔABC vuông tại A, AB = a. Các đường trung tuyến AM và BN vuông góc với nhau. Tính AB và BC theo a.
* Cho đoạn thẳng AB=2a. Từ trung điểm O của AB vẽ tia Ox⊥AB. Trên Ox, lấy điểm D sao cho OD=\(\dfrac{a}{2}\). Từ B kẽ BC vuông góc với đường thẳng AD.
a. Tính AD, AC và BC theo a
b. Kéo dài DO một đoạn OE=a. Chứng minh bốn điểm A,B,C và E cùng nằm trên một đường tròn
Bài 5. ChoΔ ABC đường cao BM và CN cắt nhau tại H .
a) Biết MA=6 cm;AB=10 cm. Tính các tỉ số lượng giác của góc A.
b) Chứng tỏ rằng góc ABM= góc ACN;AH vuông góc BC .
c) Gọi I ,J lần lượt là trung điểm của AH,BC . Chứng tỏ rằng IJ vuông góc MN .
Bài 5. ChoΔ ABC đường cao BM và CN cắt nhau tại H .
a) Biết MA=6 cm;AB=10 cm. Tính các tỉ số lượng giác của góc A.
b) Chứng tỏ rằng góc ABM= góc ACN;AH vuông góc BC .
c) Gọi I ,J lần lượt là trung điểm của AH,BC . Chứng tỏ rằng IJ vuông góc MN .
Cho tam giác ABC nhọn có BC=a và H là trực tâm. Tia BH, CH theo thứ tự cắt AC,AB tại M,N
a)CM; ∠AMN=∠ABC
b)CM: \(BH\cdot BM+CH\cdot CN=a^2\)
c)Giả sử ∠MHN=120o. Tính AH và MN theo a
d)CM: \(\sin B\cdot\sin C-\cos C\cdot\cos B=\cos A\)
e)Giả sử∠A=2∠B.CM:\(AC^2+AB\cdot AC=a^2\)
Cho \(\Delta ABC\) CMR:\(cotA+cotB+cotC=\dfrac{AB^2+AC^2+BC^2}{4S}\)( với S là diện tích tam giác ABC
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Cho hình thang ABCD có ∠B= ∠C=90 độ. Các đường chéo vuông góc với nhau tại Q.
a) C/m \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{QC^2}-\dfrac{1}{QB^2}\)
b) Các đường trung tuyến QE và BF của Δ BQC vuông góc với nhau tại G, biết BQ= \(\sqrt{6}\) cm. Tính BC.