AH/AC=3/5 nên sin C=3/5
=>cos B=3/5
=>AB/BC=3/5
=>BC=25cm
=>AC=20cm
\(HC=\dfrac{20^2}{25}=16\left(cm\right)\)
AH/AC=3/5 nên sin C=3/5
=>cos B=3/5
=>AB/BC=3/5
=>BC=25cm
=>AC=20cm
\(HC=\dfrac{20^2}{25}=16\left(cm\right)\)
cho tam giác ABC vuông tại A biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). đường cao AH=15cm. tính HB, HC
Cho ∆ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). Đường cao AH = 15cm. Tính HB, HC.
cho tam giác ABC vuông tại A đường cao AH. cmr \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
cho tam giác ABC vuông tại A đường cao AH. tính độ dài các cạnh AC,AH.
Biết AB=15cm, Hc=14cm
cho tam giác ABC vuông tại A đường cao AH. tính độ dài các cạnh AC,AH.
Biết AB=15cm, HC=16cm