Cho tam giác nhọn ABC, đường cao AD (D thuộc BC). Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Chứng minh rằng:
1. Hai tam giác AMN và ACB đồng dạng.
2. MN=AD.sin BAC
Giúp mình câu 2 với ạ, mình đang cần gấp. Mình cảm ơn ạ
Cho tam giác ABC nhọn. Chứng minh rằng cosA + cosB + cosC = AB^2 + AC^2 + BC^2/4.S.ABC
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn
Bài toán 4. Cho tam giác nhọn ABC có BAC = 60° và AB > AC, các đường cao BE,CF (E,F lần lượt thuộc CA, AB). 1. Chứng minh rằng SABC= AB.AC.căn 3/4 và BC^2 = AB^2+AC^2 – AB AC. 2. Chứng minh rằng EF = BC/2và SBCEF = 3SAEF. 3. Gọi M,N lần lượt là trung điểm của BC,EF. Tia phân giác của BAC cắt MN tại I. Chứng minh rằng IM = 2IN và MFI= 30°. Giúp mình câu 2 và câu 3 với ạ mình cảm ơn
Cho tam giác ABC có cạnh AB=12cm,AC=16cm,BC=20cm.Kẻ đường cao AM ,kẻ ME \(\perp\)AB
a)Chứng minh tam giác ABC vuông
b)Tính AM,BM
c)Chứng minh AE.AB=\(AC^2-MC^2\)
d)Chứng minh AE.AB=MB.MC.EM.AC
ai giúp mình bài này với được ko ạ, mình cảm ơn ạ!
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao Ah
a) \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b)Vẽ AD là tia phân giác góc BAH Chứng minh tam giác ACD câvà DH.DC = BD.HC
Cho tam giác ABC có BC=a, AC=b, AB=c. chứng minh: \(sin\dfrac{A}{2}< =\dfrac{a}{b+c}\)
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: \(\widehat{AFE}=\widehat{ABC}\)
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm, \(\widehat{BAC=60^o}\), \(\widehat{ABC}=80^o\) . Tính độ dài đoạn vuông góc hạ từ A xuống EF.
Cho tam giác ABC biết AB=AC=15cm, BC=24cm và đường cao AH
a. Tính các góc của tam giác ABC
b. Lấy M trên HC, từ ME kẻ vuông góc AB và MF vuông góc AC. Tính tổng ME+MF
c. Vẽ đường cao BK của tam giác ABC. CM: góc BAK= 2 góc HKA
làm câu c giúp mình thôi ạ