minh dang nghi cau a con cau b minh ra r ban co can k
b)me=1/3mn bf=1/3bcmn//bc
=>me//bf
=>e la trung diem cua af
=> AEF thang hang
minh dang nghi cau a con cau b minh ra r ban co can k
b)me=1/3mn bf=1/3bcmn//bc
=>me//bf
=>e la trung diem cua af
=> AEF thang hang
Cho tam giác ABC. Trên các cạnh AB, AC lần lượt lấy các điểm E, F sao cho EB=2EA, 2AF=3FC. Gọi G là điểm sao cho \(\overrightarrow{BC}\)=2\(\overrightarrow{CG}\), M, N lần lượt là trung điểm EF và BC.
a/CMR: \(\overrightarrow{AM}\)=\(\dfrac{1}{6}\)\(\overrightarrow{AB}\)+\(\dfrac{3}{10}\)\(\overrightarrow{AC}\) và \(\overrightarrow{MN}\)= \(\dfrac{1}{3}\)\(\overrightarrow{AB}\)+\(\dfrac{1}{5}\)\(\overrightarrow{AC}\)
b/ Phân tích vecto \(\overrightarrow{EG}\), \(\overrightarrow{FG}\) theo 2 vecto \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
c/Chứng minh rằng 3 điểm E,F,G thẳng hàng.
Cho tam giác ABC. Trên hai cạnh AB, AC lấy 2 điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB}\), \(\overrightarrow{CE}=3\overrightarrow{EA}\). Gọi M là trung điểm DE và I là trung điểm BC. CMR:
a. \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)
b. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
Cho \(\Delta ABC\) đều có O là trọng tâm và 1 điểm M tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. CMR : \(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\frac{3}{2}\overrightarrow{MO}\).
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đền BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)
Cho tam giác ABC. Gọi M là trung điểm của BC. Trên cạnh AB,AC lần lượt lấy các điểm P,Q sao cho \(\overrightarrow{AP}=\dfrac{3}{4}\overrightarrow{AB},\overrightarrow{AQ}=\dfrac{2}{3}\overrightarrow{AC}\). Gọi N là giao điểm của AM và PQ. Đặt \(\overrightarrow{NP}=k\overrightarrow{NQ}\).Tìm k
Cho hình bình hành ABCD , gọi M là trung điểm BC, điểm I thỏa \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AM}\).Chứng minh rằng \(\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Tam giác ABC có G là trọng tâm. M,N lần lượt là trung điểm của đoạn AB,BC. Lấy I,J thỏa mãn: \(\left\{{}\begin{matrix}2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\\2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\end{matrix}\right.\)
a, chứng minh M,N,J thẳng hàng
b,chứng minh J là trung điểm của IB
c,Gọi E nằm trên AB thỏa mãn \(\overrightarrow{AE}=k\overrightarrow{AB}\left(k\ne1\right)\).Xác định k để C,E,J thẳng hàng
(làm giùm mình câu c) thank nhiều
Cho tam giác ABC, G là trọng tâm, I là trung điểm BC, CMR:
a) \(\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
b) \(\overrightarrow{AG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng :
\(2\overrightarrow{MN}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{AD}\)