Cho tam giác ABC. Trên hai cạnh AB, AC lấy 2 điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB}\), \(\overrightarrow{CE}=3\overrightarrow{EA}\). Gọi M là trung điểm DE và I là trung điểm BC. CMR:
a. \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)
b. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
cho tam giác ABC, gọi M là điểm trên cạnh BC sao cho\(\overrightarrow{MB}=2\overrightarrow{MC}\) . Chứng minh: \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
Cho hình bình hành ABCD , gọi M là trung điểm BC, điểm I thỏa \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AM}\).Chứng minh rằng \(\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Cho tam giác ABC. Trên các cạnh AB, AC lần lượt lấy các điểm E, F sao cho EB=2EA, 2AF=3FC. Gọi G là điểm sao cho \(\overrightarrow{BC}\)=2\(\overrightarrow{CG}\), M, N lần lượt là trung điểm EF và BC.
a/CMR: \(\overrightarrow{AM}\)=\(\dfrac{1}{6}\)\(\overrightarrow{AB}\)+\(\dfrac{3}{10}\)\(\overrightarrow{AC}\) và \(\overrightarrow{MN}\)= \(\dfrac{1}{3}\)\(\overrightarrow{AB}\)+\(\dfrac{1}{5}\)\(\overrightarrow{AC}\)
b/ Phân tích vecto \(\overrightarrow{EG}\), \(\overrightarrow{FG}\) theo 2 vecto \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
c/Chứng minh rằng 3 điểm E,F,G thẳng hàng.
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên canh AC sao cho NA = 2NC. Gọi K là trung điểm của MN
Phân tích vectơ \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ?
cho tam giác ABC có trọng tâm là G và M là trung điểm BC. Khẳng định nào sau đây là sai
A. \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
B. \(\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AG}\)
C. \(\overrightarrow{GA}=\overrightarrow{BG}+\overrightarrow{GC}\)
D.\(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GM}\)
giúp mk giải câu C , D thôi cx đc tại cô mk bảo phải cm từng câu cho nên m.n giúp mk vs
Gọi M và N lần lượt là trung điểm các cạnh AB và CD của tứ giác ABCD. Chứng minh rằng :
\(2\overrightarrow{MN}=\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{AD}\)
Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đền BC, AC, AB. Chứng minh rằng :
\(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)
cho ΔABC, gọi G là trọng tâm tam giác, N là các điểm được xác định bởi \(\overrightarrow{CN}\)= \(\dfrac{1}{3}\overrightarrow{BC}\) .Hãy tính \(\overrightarrow{AC}\) theo \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\)