a: \(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)
b: Xét ΔCAM vuông tại A và ΔCHM vuông tại H có
CM chung
\(\widehat{ACM}=\widehat{HCM}\)
Do đó: ΔCAM=ΔCHM
c: ta có: MA=MH
mà MH<MB
nên MA<MB
a: \(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)
b: Xét ΔCAM vuông tại A và ΔCHM vuông tại H có
CM chung
\(\widehat{ACM}=\widehat{HCM}\)
Do đó: ΔCAM=ΔCHM
c: ta có: MA=MH
mà MH<MB
nên MA<MB
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
Cho tam giác ABC vuông tại A (AB<AC) Tia phân giác của góc ABC cắt cạnh AC tại D. Từ D kẻ DH vuông góc với AC (H thuộc AC).
A/ Chứng minh: tam giác ABD= tam giác HBD.
B/ Đường thẳng HD cắt đường thẳng BA tại K. Chứng minh: Tam giác BKC.
C/ Gọi M là trung điểm của KC. Chứng minh 3 điểm B, D, M thẳng hàng.
cho tam giác ABC có A=90 độ ,AB=3cm,AC=4cm
a,tính BC
b,so sánh góc B,C
c,kẻ tia phân giác góc C cắt AB tại I
từ I kẻ IH vuông góc với BC (H thuộc BC),AC cắt IH tại tại K chứng minh AK=BH
Cho tam giác abc có góc A bằng 90 độ, AB = 6cm AC=8cm kẻ tia phân giác BD (D thuộc AC) kẻ DE vuông góc với BC
a. Tính BC, BE
b. Chứng minh BD là trung trực của AE
c. ED cắt BA tại M. chứng minh tam giác MBC cân
d. Gọi I là trung điểm MC. Chứng minh BDI thẳng hàng( cần gấp)
e. Chứng minh BD > AD
Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho BM=AB.
Vẽ tia phân giác BD ( D thuộc cạnh AC ) của góc B, BD cắt AM tại H. Chứng minh rằng :
a) ∆ABH=∆MBH
b) Tia DB là tia phân giác của .
c) Kéo dài DM cắt AB tại k. Chứng minh AK=MC và BD ^ CK.
c3
Cho Tam Giác ABC có Góc BAC = 60 độ và góc ABC =90 độ. tia phân giác góc BAC Cắt cạnh cắt cạnh BC tại D,từ D kẻ DE vuông góc với Ac(E Thuộc AC)
a)chứng minh Tam Giác ABD=AED
b) Chứng minh : EA=EC
c)Chứng Minh:DB<DC
d) Biết AC=2cm. tính AB;BC
cho tam giác ABC vuông tại A,Tia phân giác của cắt AC tại D a) biết BCA=40 so sánh AC và AB b)giả sử AB=6cm AC=10 cm.Tính độ dài BC c)kẻ DE vuông góc với BC(e thuộc BC).Chúng minh tam giác ABE cân d)kéo dài cắt tia BA tại K.Chúng minh tam giác BDK=tam giác BDC e)trên tia đối của tia AD lấy điểm M sao cho AM=AD.Qua M kẻ đường thẳng d vuông góc với MB.Từ A kẻ AH vuông góc với đường thẳng d( thuộc d).G là trung điểm của BD.Chứng minh H,A,G thẳng
Câu 3 : Cho tam giác ABC vuông tại A, kẻ tia phân giác của góc BC cắt AC tại I. Kẻ IM vuông góc với BC tại M, gọi N là giao điểm của BA và MI .
a) Chứng minh tam giác ABI=MBI
b) So sánh AI và IC.
c) Gọi K là trung điểm của FC. Chứng minh ba điểm B; I; K thẳng hàng.