a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
góc ABI=góc DBI
=>ΔBAI=ΔBDI
b: ΔBAI=ΔBDI
=>BA=BD và IA=ID
=>BI là trung trực của AD
a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
góc ABI=góc DBI
=>ΔBAI=ΔBDI
b: ΔBAI=ΔBDI
=>BA=BD và IA=ID
=>BI là trung trực của AD
cho ∆abc vuông tại a tia phân giác của góc ABC cắt ac tại i kẻ ih vuông bc. Gọi k là giao điểm của ab và hi. Chứng minh rằng : a. ∆abi = ∆hbi b. Bi là đg trung trực của đoạn thẳng ah c. ∆abh là tam giác đều d. Bi vuông ck
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) chứng minh BD vuông góc với CF c) chứng minh EDF thẳng hàng
Cho tam giác ABC vuông tại A có AB = 5cm , AC = 12cm . Kẻ đường cao AH ( H thuộc BC).
a) Tính độ dài cạnh BC
b) Tia phân giác của góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC ( K thuộc AC ). Chứng minh tam giác AHD = tam giác AKD
c) Chứng minh tam giác BAD cân
d) Tia phân giác của góc BAH cắt BC tại E. Chứng minh AB + AC = BC + DE
giúp mình với ạ , tầm 30 phút nữa mình phải kt bài này rồi :(
Cho tam giác ABC cân tại A có góc A nhỏ hơn 90 độ, phân giác AD ( D thuộc BC). Kẻ đường cao BE cắt AD tại H
a) Chứng minh CH vuông góc với AB
b) Gọi F là giao điểm của CH và AB. Chứng minh AD là trung trực của đoạn EF
c)Kẻ EI vuông góc với HC tại I; FJ vuông góc với HB tại J. Chứng minh các đường thẳng EI, FJ và AD cùng đi qua một điểm O
d) Chứng minh AC - AF> OF - OC
Các bạn ơi giúp mình với nhé!
Cho tam giác ABC cân tại A, (góc A <900), gọi M là trung điểm của BC.
a) Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A.
b) Kẻ BH vuông góc AC (H thuộc AC), CK vuông góc AB (K thuộc AB). Chứng minh tam giác CHB = tam giác BKC.
c) Gọi I là giao điểm của BH và CK. Chứng minh A, I, M thẳng hàng.
Cho tam giác ABC (Góc A=90 độ), phân giác góc B cắt AC tại D.
a) So sánh AB và BD
b) So sánh BC và BD
c) Kẻ DE vuông góc với BC tại E. Gọi F là giao điểm của BA và ED. Chứng minh BDlà đường trung trực AE
d) Chứng minh DF=DC
e) Chứng minh AD<DC
Cho tam giác ABC có AB=AC=10cm, BC=12cm. Vẽ AH vuông góc BC tại H a) Chứng minh tam giác AHB=tam giác AHC, từ đó chứng minh AH là tia phân giác của góc A b) Tính độ dài AH c) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC, chúng cắt nhau tại O. Tam giác ABC là tam giác gì, vì sao?
Bài 18: Cho tam giác ABC, A=90 độ đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a/ AE = EH b/Tam giác ABC=Tam giác HBK c/ AH // KC
d/ Nếu cho góc ABC=60 độ. Chứng minh: AC + KH > 3.AH
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .