Cho tam giác ABC cân tại A, (góc A <900), gọi M là trung điểm của BC.
a) Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A.
b) Kẻ BH vuông góc AC (H thuộc AC), CK vuông góc AB (K thuộc AB). Chứng minh tam giác CHB = tam giác BKC.
c) Gọi I là giao điểm của BH và CK. Chứng minh A, I, M thẳng hàng.
a) Xét ΔAMB và ΔAMC có
AM chung
BM=CM(M là trung điểm của BC)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(c-c-c)
a) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB và AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Xét ΔCHB vuông tại H và ΔBKC vuông tại K có
BC chung
\(\widehat{HCB}=\widehat{KBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔCHB=ΔBKC(cạnh huyền-góc nhọn)
c) Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
hay AM\(\perp\)BC
Xét ΔABC có
BH là đường cao ứng với cạnh AC(gt)
CK là đường cao ứng với cạnh AB(gt)
BH cắt CK tại I(gt)
Do đó: I là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AI\(\perp\)BC
mà AM\(\perp\)BC(cmt)
và AI và AM có điểm chung là A
nên A,I,M thẳng hàng(đpcm)