Cho tam giác ABC vuông tại A ( hình vẽ ) . CMR : \(\left(h+c\right)^2=\left(a+b\right)^2+h^2\)
Help me !!! Gấp gấp gấp Mysterious Person
Cho tam giác ABC vuông tại A ( hình vẽ ) . CMR : \(\left(h+c\right)^2=\left(a+b\right)^2+h^2\)
Help me !!! Gấp gấp gấp Mysterious Person
BT1: Cho a,b,c>0. CMR: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)
BT2: Cho a,b,c là các số thực. CMR:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
Mk đang cần gấp. Giúp mk với!!!
Cho tam giác \(ABC\) nhọn. CMR:
\(\cos\left(\dfrac{A-B}{2}\right)+\cos\left(\dfrac{B-C}{2}\right)+\cos\left(\dfrac{C-A}{2}\right)\)
\(\le\dfrac{\sqrt{2}}{2}\left(\dfrac{a+b}{\sqrt{a^2+b^2}}+\dfrac{b+c}{\sqrt{b^2+c^2}}+\dfrac{c+a}{\sqrt{c^2+a^2}}\right)\)
Cho SABC = 1. Cạnh a, b, c đường cao tương ứng ha, hb, hc. Chứng minh \(\left(a^2+b^2+c^2\right)\left(h_a^2+h^2_b+h^2_c\right)\ge36\)
Cho a, b, c là độ dài các cạnh của tam giác. CMR: \(a^2\left(b+c-a\right)+b^2\left(c+a-b\right)+c^2\left(a+b-c\right)\le3abc\)
Cho 3 số a , b , c đôi 1 khác nhau . CMR :
\(\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Cho a , b , c dương
CMR \(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Rút gọn biểu thức
Các bạn giải gấp cho mình nha . Mình đang cần rất gấp
\(\left(2-\sqrt{3}\right)\left(\sqrt{26+15\sqrt{3}}\right)-\left(2+\sqrt{3}\right)\left(\sqrt{26-15\sqrt{3}}\right)\)
Cho a,b,c là các số thực dương. CMR:
\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}\le\dfrac{3}{2}\)
1)Tính:
a)\(\sqrt{13a}.\sqrt{\frac{52}{a}}\left(a< 0\right)\)
b)\(\left(2+\sqrt{5}\right).\left(2-\sqrt{5}\right)\)
c)\(\sqrt{b^4\left(a-b\right)^2}.\frac{1}{a-b}\left(a< 0\right)\)
d)\(\left(\sqrt{2019}-\sqrt{2018}\right).\left(\sqrt{2018}+\sqrt{2019}\right)\)
Giúp mk vs mấy bn, mk đang cần gấp
Bài 1: Cho a,b là hai số dương, chứng minh rằng:
\(\sqrt{\left(\sqrt{a^2+b^2}-a\right)\left(\sqrt{a^2+b^2}-b\right)}=\dfrac{a+b-\sqrt{a^2+b^2}}{\sqrt{2}}\)
CÁC BẠN ƠI GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!