cho a,b,c là các số dương thỏa mãn: a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
chứng minh rằng: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Chứng minh :
a) \(\dfrac{3x}{2y}+\dfrac{3}{2}\sqrt{\dfrac{3}{5}}-\sqrt{\dfrac{3}{4}}=\dfrac{3\sqrt{x}}{2}.\left(\dfrac{\sqrt{x}}{y}+\sqrt{\dfrac{3}{5x}}-\sqrt{\dfrac{1}{3}}\right)\)
b)\(ab.\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\) , với a ; b > 0
c) \(\left(\dfrac{3}{a}\sqrt{\dfrac{a^3}{b}}-\dfrac{1}{2}\sqrt{\dfrac{4}{ab}}-2\sqrt{\dfrac{b}{a}}\right):\sqrt{\dfrac{1}{ab}}=3a-2b-1\) với a, b >0
d)\(\left(\sqrt{\dfrac{16a}{b}}+3\sqrt{4ab}-a\sqrt{\dfrac{36b}{a}}+2\sqrt{ab}\right):\left(\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{a}{b}}\right)=2\) Với a, b >0
Mọi người giúp tớ với ạ !!!!!! Mình thật sự cần gấp vào ngày mai !!!!
Chứng minh rằng: \(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\) với a, b là các số dương
Bài 1:Thu gọn và tính:
a)A=\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với\(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)B=\(\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với\(x=1+\sqrt{5}\)
Bài 2: Tìm GTLN GTNN của \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
Rút gọn các biểu thức sau :
1, \(\sqrt{4\left(a-4\right)^2}\) ( với a \(\ge\) 4 )
2, \(\sqrt{9\left(b-5\right)^2}\) ( với b < 5 )
Giúp mình vs mình cần gấp ạ , cảm ơn nhìuuu 🌷
Rút gọn biểu thức sau:
R=\(\dfrac{a+b}{\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{2}{\sqrt{ab}}:\left(\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{b}}\right)^2\)
Mik đang cần gấp!!!
1) Rút gọn các đa thức:
a) \(\dfrac{1}{m.n^2}\cdot\sqrt{\dfrac{m^2.n^4}{5}}\) với \(m< 0;n\ne0\)
b) \(\sqrt{\dfrac{m^4}{9-12m+4m^2}}\) với \(m\le1,5\)
c) \(\dfrac{a-1}{\sqrt{a}-1}:\sqrt{\dfrac{\left(a-1\right)^4}{a-2\sqrt{a}+1}}\) với \(0< a< 1\)
d) \(\dfrac{a-b}{\sqrt{a+b}}:\sqrt{\dfrac{\left(a-b\right)^2}{a\left(a+b\right)}}\) với \(a>b>0\)
2) Chứng minh rằng:
\(\dfrac{a-b}{b^2}:\sqrt{\dfrac{a^2-2ab+b^2}{a^2.b^2}}=\left\{{}\begin{matrix}a\left(a>b>0\right)\\-a\left(0< a< b\right)\end{matrix}\right.\)
Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
Bài 1: Chứng minh rằng: với \(a>\dfrac{1}{8}\) thì số sau là 1 số nguyên:
\(x=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\)
Bài 2: Cho các số thực x,y thỏa mãn: \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Tính giá trị biểu thức: \(A=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)
Mọi người ơi giúp Mank với, sắp phải nộp rùi :3