Lời giải:
Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$
Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$
$14^2=a.4a$
$4a^2=196$
$a^2=49\Rightarrow a=7$ (do $a>0$)
Khi đó:
$BH=a=7$ (cm); $CH=4a=28$ (cm)
$BC=BH+CH=7+28=35$ (cm)
$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)
$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)
Chu vi tam giác $ABC$:
$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)