Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Tâm Long

Cho tam giác ABC vuông tại A, đường cao AH. AB:AC = 3/4. AH=12cm. Tính HB, HC

hâyztohehe
30 tháng 6 2021 lúc 8:22

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{\sqrt{AB^2+AC^2}}{\sqrt{3^2+4^2}}=\dfrac{BC}{5}=k\left(k>0\right)\Rightarrow AB=3k,AC=4k,BC=5k\)

Theo hệ thức lượng giác vào tam giác vuông ABC đường cao AH có:

\(AB\cdot AC=BC\cdot AH\Rightarrow3k\cdot4k=5k\cdot12\Rightarrow k=5\) \(\Rightarrow AB=15cm;AC=20cm;BC=25cm\)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right);HC=BC-HB=25-9=16\left(cm\right)\)

Hoaa
30 tháng 6 2021 lúc 8:17

ta có : AB/AC=3/4=tan góc C

=> góc C=37 độ

Xét tam giác AHC vuông tại H ta có

tan góc ACH=AH/CH

=>CH=16cm

Mặt khác ta có : AH^2=HB.HC

=>HB=9cm

hnamyuh
30 tháng 6 2021 lúc 8:19

Gọi AB = 3a ⇒ AC = 4a

Áp dụng hệ thức lượng giác trong tam giác ABC vuông tại A , ta có : 

\(\dfrac{1}{(3a)^2} + \dfrac{1}{(4a)^2} = \dfrac{1}{12^2}\\ \Rightarrow a = 5\)

Áp dụng Pitago trong tam giác vuông AHB và AHC ta có : 

\(HB=\sqrt{15^2-12^2}=9\)

\(HC=\sqrt{20^2-12^2}=16\)

Nguyễn Hoài Đức CTVVIP
30 tháng 6 2021 lúc 8:33

ta có : AB/AC=3/4=tan góc C

=> góc C=37 độ

Xét tam giác AHC vuông tại H ta có

tan góc ACH=AH/CH

=>CH=16cm

Mặt khác ta có : AH^2=HB.HC

=>HB=9cm

  

Các câu hỏi tương tự
Thaihung
Xem chi tiết
Văn Thị Kim Thoa
Xem chi tiết
Nguyễn Bảo Nhi
Xem chi tiết
Ngọc An
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
KBSA
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
Ran Haitani
Xem chi tiết
Văn Thị Kim Thoa
Xem chi tiết